The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of tissue-engineered cartilage biomechanical and biochemical properties on its post-implantation mechanical behavior.

The insufficient load-bearing capacity of today's tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content and the collagen network architecture has gained interest. However, it is unknown whether the mecha...

متن کامل

an investigation of the impact of self monitoring on langauge teachers motivational practice and its effect on learners motivation

the central purpose of this study was to conduct a case study about the role of self monitoring in teacher’s use of motivational strategies. furthermore it focused on how these strategies affected students’ motivational behavior. although many studies have been done to investigate teachers’ motivational strategies use (cheng & d?rnyei, 2007; d?rnyei & csizer, 1998; green, 2001, guilloteaux & d?...

Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs.

OBJECTIVE To determine the effects of bone morphogenetic protein-2 (BMP-2), insulin-like growth factor (IGF-I), and transforming growth factor-beta1 (TGF-beta1) on the biochemical and biomechanical properties of engineered articular cartilage constructs under serum-free conditions. METHODS A scaffoldless approach for tissue engineering, the self-assembly process, was employed. The study consi...

متن کامل

Quantitative evaluation of mechanical properties in tissue-engineered auricular cartilage.

Tissue-engineering (TE) efforts for ear reconstruction often fail due to mechanical incompetency. It is therefore key for successful auricular cartilage (AUC) TE to ensure functional competency, that is, to mimic the mechanical properties of the native ear tissue. A review of past attempts to engineer AUC shows unsatisfactory functional outcomes with various cell-seeded biodegradable polymeric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biomechanics and Modeling in Mechanobiology

سال: 2012

ISSN: 1617-7959,1617-7940

DOI: 10.1007/s10237-012-0380-0